Tag: DeepMind

DeepMind lernt jetzt StarCraft II

Nachdem Google DeepMinds AlphaGo mit Lee Sedol den weltweit besten Go-Spieler geschlagen hat, versucht das Team hinter der Google-Akquisition nun, die nächste Nuss zu knacken. Mit StarCraft II haben sie sich dabei eine besonders schwere Nuss herausgesucht. StarCraft ist nicht rundenbasiert, sondern ein sogenanntes Echtzeitspiel. Die Entscheidungen die DeepMind trifft, müssen also schnell und akkurat sein. Dennoch kann man das Gelernte aus AlphaGo wenigstens teilweise anwenden, denn beide Spiele (Go und StarCraft) haben eine Gemeinsamkeit. Betrachten wir das Spielverhalten von Schach, Go und StarCraft, wird dies deutlicher:

  •  Schach
    • Strukturen sind zum Start gegeben
    • Ziel ist es, die gegnerischen Strukturen zu zerstören
  • Go
    • Strukturen sind nicht zum Start gegeben
    • Ziel ist es, eine Strukturen so aufzubauen, dass man den Gegner beherrscht
  • StarCraft
    • Strukturen sind nicht zum Start gegeben
    • Ziel ist es, gegnerische Strukturen zu zerstören und eigene Strukturen stabil zu halten

Vereinfacht gesagt: StarCraft ein Mix aus den beiden anderen vorgestellten Spielphilosophien. Ein möglicher Ansatz des DeepMind-Teams wird im Video deutlich. Der Eindruck vom Spielfeld wird in Feature Layern (Merkmalsebenen) abgebildet. Anhand dieser Darstellung kann DeepMind dann, die Strategien der Gegner abschätzen und daraus eigene Strategien entwickeln.




Demis Hassabis – Ein Kopf hinter Google DeepMind

Demis Hassabis, einer der führenden Köpfe hinter Google DeepMind redet über die Form von KI, an der DeepMind baut. Demis hat nach der Uni an verschiedenen Startups mitgewirkt – auch im Bereich Machine Learning. Nach seiner Startup-Zeit ging es für ihn wieder zurück an die Universität, wo er in Cognitive Neuro Science promovierte.

Er unterscheidet in seinem Vortrag verschiedene Formen von Künstlichen Intelligenzen:

  • Learning vs. Handcrafted
  • General vs. Specific
  • Grounded vs. Logic-based
  • Active learning vs. Passive observation




Google DeepMind ist nur an Intelligenzen interessiert, die sich, wie folgt, kategorisieren lassen:  feature learning, general purpose, grounded und active learning. Doch was bedeutet dies im Detail? Die gelernten Modelle sollen ihre Feature-Extraktoren selbst lernen (also durch Feedback relevante Merkmale finden), sie sollten keinem speziellem Zweck dienen, sondern universal einsetzbar sein. Außerdem basieren sie auf probabilistischen Ansätzen, die biologisch motiviert werden. Als letztes Kriterium sollen sie aktiv lernen und dafür eine Belohnung oder eine Strafe erhalten (reward, insb. reinforcement learning). Wie Demis es in seinem Vortrag sagt: “System without any data, learning from the first principles”.

Neben seinem Ausblick in die Zukunft von DeepMind redet er vor allem über zwei Anwendungsfälle von Googles DeepMind. Als erstes geht er auf AlphaGo ein (eine KI die Lee Sedol im Spiel Go geschlagen hat). Sein zweiter Anwendungsfall ist ein Rechenzentrum von Google, dass mit einem von Google DeepMind entwickelten System signifikant Strom sparen konnte.