Tag: Empfehlung

So funktioniert Recommendation bei Spotify

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Empfehlungssystemen begegnet man überall im Internet. Auch bei Spotify arbeitet man mit State-of-the-Art Systemen im Bereich Recommendation.

Drei verschiedene Systeme werden bei Spotify dazu benutzt, um euch die Musik vorzuschlagen, die euch sehr wahrscheinlich gefallen könnte.

Dabei bedient sich Spotify an Metadaten der Tracks, liest die Logs der gespielten Musik und durchsucht sogar Blogs und News nach verschiedenen Artikeln. Diese Informationen werden dann benutzt, um euch einen neuen Track zu empfehlen.

Diese 3 Methoden benutzt Spotify

Kollaboratives Filtern – “Wer X gehört hat, hat auch Y gehört.” Amazon nutzt beispielsweise Kollaboratives Filtern, um euch zu zeigen, welche Produkte jemand noch gekauft hat, der ähnliche Produkte wie ihr kaufte. Das funktioniert zum Beispiel über Matrixfaktorisierung.

Natural Language Processing – Die Songtexte und Beschreibungen werden mit Natural Language Processing durchsucht und nach Schlüsselwörtern sortiert. Ähnliche Textpassagen und Phrasen sprechen für eine Ähnlichkeit. Schwierig wird es, wenn der Track sehr wenige bis garkeine Lyrics enthält. Dafür gibt es noch eine dritte Form der Recommendation.

Audio Material – Auf den reinen Audiosignalen wird ein neuronales Netz (Deep Learning) angewandt. Dieses Netz erkennt Ähnlichkeiten in den Frequenenzen. Es nutzt auch weitere Features, um die Ähnlichkeit eines Songs zu bestimmen. So kann man vor allem Songs bewerten, die über keine Lyrics verfügen und bisher selten gehört wurden (also keine Chance für Kollaboratives Filtern hätten).

Ihr findet das Thema spannend? Hier gibt es den längeren Artikel dazu.

Der Reiz des Utopischen – Was sind Utopien?

Wo geht der Weg der Menschheit hin? Welche Rolle spielen unsere technischen Möglichkeiten dabei? Diese Fragen beschäftigen viele Forscher – nicht nur im Bereich Künstliche Intelligenz. Utopien sind dabei ein beliebtes Genre, den (oft extremen) Rahmen der Möglichkeiten abzustecken. Unser Gastautor Tino Polzin erklärt uns, warum wir mehr über Utopien lesen sollten.

Was sind Utopien?

Jeder von uns kennt den Ausdruck, dass etwas „utopisch“ ist und versucht damit den Umstand zu verdeutlichen, dass etwas unmöglich zu erreichen scheint. Obwohl der Begriff Utopie zu Zeiten der griechischen Hochkulturen so nicht existierte, stammt er doch aus dem Griechischen und bedeutet tópos „Ort“ und ou „nicht“. Wörtlich bedeutet Utopie „Nirgendsland“ oder „Nichtland“.

In einer Utopie möglich: Eine virtuelle Stadt, die sich von unser Vorstellung einer Stadt sehr weit entfernt hat.

In einer Utopie möglich: Eine virtuelle Stadt, die sich von unser Vorstellung einer Stadt sehr weit entfernt hat.

Utopien in der Literatur stellen gemeinhin eine ideelle Gesellschaft dar, die in einem mehr oder weniger isolierten Raum existiert. Diese imaginären Gemeinschaften stellen eine positive oder negative Entwicklung der real existierenden Welt dar. Kurz gesagt sind Utopien die Manifestation einer „möglichen Gesellschaft“ im Text. Die erste Utopie überhaupt stammt vom Philosophen Platon. In seinem Werk „Politeia“ (dt. „Der Staat“) aus dem Jahre 370 v. Chr. versucht er die Gerechtigkeit im Staat und die perfekte Ordnung der Gesellschaft zu entwickeln. In der Literatur gibt es neben den Utopien auch die Anti-Utopien (Dystopien). Romane also,  die sich mit dem Gegensatz einer ideellen Gesellschaft auseinandersetzen. Bekanntestes Beispiel hierfür ist der Roman „1984“ von George Orwell aus dem Jahre 1949.

Warum sollte man Utopien lesen?

Utopien klingen befremdlich oder idyllisch? Unsere Verantwortung ist es, sie zu verhindern oder herbeizuführen.

Utopien klingen befremdlich oder idyllisch? Unsere Verantwortung ist es, sie zu verhindern oder herbeizuführen.

Viele Autoren von Utopien entwickeln eigene Vorstellungen einer ideellen Gesellschaft und beziehen sich dabei meist mit einem satirisch-kritischen Unterton auf vorherrschende Gesellschaftsverhältnisse der jeweiligen Zeit. Damit geben utopische Romane dem Autor vergleichsweise viel Macht in die Hände, vor allem in Zeiten staatlicher Zensur. Für uns als Leser bietet sich hierbei die Möglichkeit, einen Einblick in die Gedanken des jeweiligen Autors zu bekommen. Zudem lassen sich mit dem nötigen Verständnis für die jeweilige Zeitepoche auch die Nuancen von Kritik und Satire an Missständen vergangener Gesellschaften erkennen.

Neben unterschiedlichen Utopien des perfekten Staates bietet auch die fortschreitende, technische Entwicklung genügend Möglichkeiten und Anlässe, sich mit dem Lesen utopischer/ dystopische Romanliteratur den Geist dafür zu öffnen, wo technische Entwicklungen enden können und ob dies im Sinne der Menschheit ist. Als Beispiel für die Auseinandersetzung von Technik in Utopien sei hier nur Aldous Huxleys „Schöne Neue Welt“ genannt. Huxley beschreibt in seinem Buch einen Weltstaat, dessen zentrales Wesensmerkmal die genetische Manipulation von Erbgut und Embryonen ist.

Utopien bieten trotz ihrer oftmals simplen Erzählstruktur ein Fenster in die Zukunft, durch das wir als Leser blicken können. Dabei können wir von dieser Zukunft fasziniert sein oder uns angewidert abwenden, aber wir sollten dabei nicht vergessen, dass jedes Fenster auch ein Spiegel sein kann.

Welche Utopien sind lesenswert?

  • Platon, „Politeia (dt. „Der Staat“), 370 v. Chr. – Warum: Erste Utopie überhaupt und prägender Entwurf für die Ordnung eines Staates und dessen Gesellschaft.
  • Thomas Morus, „Utopia, 1516 – Warum: Namensgeber des Utopiegenres, zudem auch kritische Auseinandersetzung mit der Zeit des 16. Jahrhunderts.
  • Aldous Huxley, „Schöne Neue Welt, 1932 – Warum: Ein Weltstaat, der durch genetische Kontrolle und glücklich machende Rauschmittel im wahrsten Sinne des Wortes glückliche Menschen erschafft.
  • George Orwell, „Nineteen Eighty-Four, 1949 – Warum: Die wohl bekannteste Dystopie überhaupt etablierte den „Big Brother“ und führt dem Leser vor Augen, was passiert, wenn die Überwachung total und absolut wird.
  • Dave Eggers, „The Circle, 2013 – Warum: In gewisser Weise übersetzt diese Mini-Dystopie den Roman „1984“ in unsere Zeit, in der ein Internetkonzern nicht nur das (digitale) Leben seiner Nutzer totalüberwachen will.

Zum Gastautor: Tino Polzin, Jahrgang ’90, studierte Philosophie, Geschichte und Psychologie an der TU Dresden sowie der FU Hagen. Aktuell beschäftigt er sich mit der Klassifikation von Utopien in der Literatur.

Apples Machine Learning Journal ist da!

Das Refiner Network. Quelle: Apples Machine Learning Journal / machinelearning.apple.com

Vor einiger Zeit hatte Apple angekündigt, mehr eigene Entwicklungen im Bereich Machine Learning publik zu machen. Jetzt scheint es so weit zu sein! Apple hat das Machine Learning Journal gelauncht. Sogar der erste Beitrag ist schon da. Der beschäftigt sich mit einem Refiner Network genanntem Modul. Dieses Modul hilft dabei, synthetische Datensätze realistischer zu machen, um damit große Datenmengen zu erzeugen. Diese werden zum Training von Machine Learning Anwendungen gebraucht.




Warum ist das nötig? Meist ist es sehr kostenintensiv, große Datenmengen mit Labeln zu erstellen. Daher kommt die Motivation auf synthetische (durch die Erstellung bereits gelabelt) Daten zurückzugreifen.

Hier geht es zur Leseempfehlung!

Wird Sentiment Analysis Produkt-Reviews vereinfachen?

3 Minuten Lesezeit | Stimmungen und Meinungen sind wichtig. Viele Firmen sammeln diese Informationen ihrer Kunden und werten sie aus. Produkt-Reviews sind seit jeher ein wichtiger Forschungsgegenstand der Sentiment Analysis. Bisher hat es aber noch kein System geschafft, Produkt-Reviews so aufzuarbeiten, dass das Lesen Spaß macht.

Sentiment Analysis beschreibt die Extraktion von Stimmungen aus beispielsweise Texten. Die ersten Ansätze beschränkten sich auf einen Dictionary-Ansatz, bei dem hinter jedem Wort ein bestimmter Sentiment-Wert lag, deren Summe am Ende berechnet wurde (positiv oder negativ). Um mehr textuellen Kontext aus den Worten und Phrasen zu bekommen, wurden N-Gram-Modelle genutzt. Damit konnte man beispielsweise Verneinungen und Phrase detektieren. Der aktuelle State-of-the-Art arbeitet mit Deep Learning Netzen (Beispiel: A Deep Neural Architecture for Sentence-level Sentiment Classification in Twitter Social Networking).

pro-vs-con

Beste Pro vs. Contra Bewertung des Buches “Homo Deus“. Quelle: amazon.com

Dadurch wird die Sentiment Analysis immer robuster. Es ergeben sich viele Anwendungsfelder, die vorher nicht möglich waren. Ein spannendes Feld sind Produkt-Reviews. Jeder kennt es, jeder hasst es. Produkt-Reviews sind meist nach Sternen sortiert. Trotzdem können die Texte der Reviews einen positiven sowie negativen Teil enthalten. Will man verstehen, warum eine Sternebewertung zustande kommt, muss man den kompletten Text lesen.

Die Lösung: Eingefärbte Textstellen (positiv / negativ) würden das Lesen und Reviews vereinfachen und schnellere Kaufentscheidungen forcieren. Es hätte also einen positiven Effekt für den Käufer sowie den Händler.

block-review

Ein spannendes Review (Homo Deus) das von vielen Usern sicher ungelesen bleibt. Quelle: amazon.com

Für wen lohnt es sich?

Von farblich aufgearbeitete Reviews könnten alle Akteure profitieren:

  • Plattformbetreiber – Reviewer können weiterhin ausführliche Reviews schreiben, denn diese werden für sie aufgearbeitet. Es wird also mehr Aktivität erzeugt.
  • Reviewer – Können sich auf den Inhalt konzentrieren, das die Formatierung für sie erledigt wird. Da mehr Leute ihre ausführlichen Reviews lesen, werden sie dadurch beflügelt, mehr Content zu liefern.
  • Händler – Kriegt die Reviews für sein Produkt besser aufgearbeitet und kann gegensteuern bzw. besser an den die Kontrapunkten seines Produktes arbeiten.





Blut geleckt?

Du hast Blut geleckt und willst dich mit Sentiment Analysis beschäftigen. Hier zeigen wir dir, was du tun must:

  1. Lies diesen Artikel 😉 der Klassiker (hier)
  2. Schau dir die Demo an und beschäftige dich mit den Dokumenten (hier)
  3. Videos, Videos, Videos! Dan Jurafsky und Chris Manning auf Youtube (hier)
  4. Was ist State of the Art? Wir sagen es euch im Science Radar