Month: August 2019

Wann überholt die Maschine den Mensch?

Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang und Owain Evans haben in ihrer Arbeit: “When Will AI Exceed Human Performance? Evidence from AI Experts” verschiedene KI Experten auf dem gesamten Globus um Schätzungen zu verschiedenen Fragestellungen gebeten. Die Hauptfrage dabei war:

Wann wird die KI stärker sein als der Mensch?

oder auf englisch:

When will AI exceed human performance?

Figure 1: Wann wird die Künstliche Intelligenz stärker sein als der Mensch?

Die Wissenschaftler sollten das Jahr 2016 als Anfangspunkt nehmen und versuchen, für die kommenden 100 Jahre jeweils eine Wahrscheinlichkeit abzugeben, wann sie damit rechnen.

Die grauen Linien in Figure 1 zeigen alle Messpunkte der verschiedenen Forscher. Die aggregierte Vorhersage überschreitet in circa 50 Jahren die “50% wahrscheinlich, das die KI den Menschen überholt” Marke. In 100 Jahren ist die Wahrscheinlichkeit bei knapp 75%.

Figure 2: Hat die optimistische/pessimistische Schätzung eventuell kulturelle Hintergründe?

Sehr spannend sind die “Ausreißer” – die sehr optimistischen und sehr pessimistischen Schätzer. Figure 2 illustriert, das asiatische Forscher sehr optimistisch geschätzt haben. Nordamerikanische Forscher hingegen schätzen sehr pessimistisch. Welche Einflüsse die Autoren der Studie dafür verantwortlich machen, wird nicht genannt.

 

Wir können allerdings festhalten, dass wir in 50 Jahren eine 50% Chance und in 100 Jahren eine 75% Chance haben, das eine KI stärker sein wird, als ein Mensch.

Figure 3: Berufe, Kreativität und Computerspiele. Wann wird eine Maschine das beherrschen?

 

Diese Aussage ist natürlich sehr wage. Aktuell existieren Systeme, die effizienter arbeiten als der Mensch – beim Verpacken von Kisten, beim Schweißen von großen Metallflächen und weiterem mehr. In der Frage, welche die Autoren stellten, ging es um eine komplette Intelligenz, die mit HLMI (Human Level Machine Intelligence) bezeichnet wird.

Die Umfrage beschäftigte sich aber auch mit weiteren Fragestellungen. Unter anderem wurden die Forscher danach gefragt, wann eine Intelligenz spezifische Sachen besser kann als ein Mensch.

Figure 3 zeigt verschiedene Aufgaben mit den Schätzungen in Jahren, die es noch dauern könnte, bis eine Intelligenz diese Aufgabe, besser als ein Mensch, erledigen kann. Bis eine Intelligenz eine bessere Vertriebsperson ist, soll es im Mittel noch 14 Jahre dauern (die Linie zeigt die Abweichung aller Schätzungen an, es handelt sich hier nicht um einen Roboter, sondern um eine Software).

Sogar mathematische Forschung soll eine Intelligenz irgendwann besser können als der Mensch. Mit diesen schwereren Tasks beschäftigt sich Figure 4.

Figure 4: Nichts ist unmöglich. Etwas kompliziertere Aufgaben brauchen länger, bis sie automatisiert sind.

Dank dieser Studie von Katja Grace et al. haben wir nun eine ungefähre Vorstellung, wann uns die Künstlichen Intelligenzen gefährlich werden können. Allerdings wird sich unser Bild auf die Menschheit, auf Roboter und der Welt in der wir leben in diesen vielen Jahren auch grundsätzlich verändert haben.

Hier gehts zur Studie

 

5 Wege wie Roboter den Mainstream erreichen

n diesem Artikel von PWC werden 5 Wege gezeigt, die die nächste Generation der Roboter auszeichnet und ihnen helfen wird, in den Mainstream zu gelangen. Diese 5 Wege sind hauptsächlich:

  1. Aus einer starren Umgebung in eine Dynamische – Roboter und ihre Ingenieure lernen zunehmend, wie das Verhalten von Robotern in dynamischen Umgebungen aussehen muss.
  2. Von der Isolation zu Cobots – Collaborating Robots ist aktuell das Schlagwort, wenn man von Robotern spricht, die mit dem Menschen zusammen arbeiten sollen.
  3. Vom programmierten zum gelernten Verhalten – Forschungen im Bereich des Machine Learning machen es möglich, dass Roboter out-of-the-box ihr gewünschtes Verhalten lernen. Das macht sie sehr flexibel.
  4. Von der Einzelfertigung zum flexiblen Einsatz – Besseres Verständnis der Prozesse in Wirtschaft und Industrie haben dazu geführt, dass Roboter nicht nur für einzelne Kunden spannend sind, sondern auf diverse Prozesse (in langen Prozessketten) eingesetzt werden können.
  5. Vom Back-Office zum Front-Office – Früher wurden Roboter in Fabrikhallen hinter Glasscheiben betrieben. Es ist aber nun auch möglich, bestimmte Typen von Robotern dafür zu nutzen, mit dem Kunden zu kommunizieren. Beispielsweise werden Roboter nicht nur für die Fertigung, sondern auch zur Auslieferung benutzt.

Den Artikel von PWC gibt es hier in ganzer Länge. Viel Spaß beim Lesen.

Kraken Robotics – The sky is the seabed

In der Rubrik Startups & Unternehmen stellen wir neue innovative Firmen aus dem Bereich der Künstlichen Intelligenz vor. Diesmal: Kraken Robotics aus Neufundland.

Kraken Robotics ein Unternehmen aus Neufundland (Kanada) arbeitet an autonomen Unterseebooten. Das Unternehmen an sich verfolge ich nun schon seit knapp 3 Jahren. Damals etablierte Kraken eine Tochterfirma in Deutschland. Das erklärte Ziel von Kraken ist es, den Boden des Ozeans zu kartieren. Das klingt erstmal nach einer typischen Aufgabe für ein Forschungsinstitut und nicht nach einer kommerziellen Idee, hinter der eine Firma steht. Allerdings ergeben sich daraus diverse Geschäftsfelder, die nicht sofort ersichtlich sind.

Aber was bietet Kraken eigentlich:

  • AquaPix(TM) Sensoren – Diese Sonar-Sensoren bieten eine Weltneuheit, was ihre Genauigkeit und Präzision angeht.
  • Diverse Sensoren – Zum Messen von Geschwindigkeit bzw. anderen Parametern unter der Wasseroberfläche.
  •  KatFish(TM) und ThunderFish(TM) – Zwei autonome Unterseeboote, die mit Kraken-Sensoren ausgestattet sind und damit Gewässer kartieren können.
  • SeaVision(TM) – Ein Sensorsystem mit dem man Oberflächeninspektion an Objekten in Gewässern durchführen kann.
  • Diverse andere Komponenten –  die druckresistent arbeiten können, darunter auch einen Datenspeicher

Erstaunlich dabei ist die Genauigkeit der Sensoren. Dadurch lassen sich selbst komplizierte Strukturen am Meeresboden visualisieren und inspizieren. Wie im Bild zu sehen, gelingt es den Kraken Sensoren sogar, die SS Ferrando ein ehemaliges Transportschiff des Britischen Empires sehr genau zu aufzulösen.

Kraken hat erst kürzlich wieder ein Funding des Kanadischen Ministeriums für Innovation in Höhe von $5.9M bekommen. Dabei ist Kraken Teil des Ocean Superclusters, einer Initiative des Ministeriums, die sich an Technologien rund um die Themen Ozeane, autonome Systeme und Robotik drehen. Typische Anwendungsfelder für die Technologie von Kraken sind:

  • Generelle Erkundung von Ozeanen, um seine Mechanismen besser zu verstehen
  • Maintenance von Öl- und Gasleitungen bzw. von Systemen die auf oder in Gewässern betrieben werden
  • Militärische Aktionen wie Aufklärung oder Überwachung von Gewässern
  • Und natürlich die Suche nach verborgen liegenden Schätzen 😉

Aktuell arbeitet man bei Kraken daran, Sensoren und Experimentierplattformen zu verbessern. Allerdings hat man bereits schon diverse Deals mit privaten Forschungsinstituten und Militärs unterschrieben. Es existiert also schon eine Form von Cashflow für Kraken.

Es bleibt also spannend bei Kraken Robotics. Man spekuliert von einer $250M+ Pipeline, die das Unternehmen bereits haben soll. Wer also an der Börse aktiv ist, sollte mal einen Blick auf Kraken Robotics (PNG.V, 2KQ.F) werfen.

Das nachfolgende Video von der CannTech2019 zeigt nochmals das Potential, welches Kraken in der Zukunft mitbringen kann.

How to Start mit Künstliche Intelligenz

In diesem Blogartikel zeige ich dir, wie du anfangen kannst, dich mit Künstlicher Intelligenz zu beschäftigen. Das Thema ist natürlich sehr umfassend und natürlich kommt es darauf an, welches Ziel du verfolgst. Bist du beispielsweise einfach interessiert an zukünftigen Entwicklungen. Dann sind für dich andere Quellen spannend, als für jemanden der direkt im Bereich Machine Learning etwas entwickeln will. Interessierst du dich vielleicht sogar nur für die Robotik, dann wirst du anderes lesenswert finden. In diesem Artikel will ich jedoch einfach ein paar Anstöße geben, um sich mit dem Thema grundlegend zu beschäftigen.

Lesen

Grundlegende Lesetipps für alle Bereiche rund um das Thema KI habe ich hier bereits zusammengestellt. Schau dort einfach vorbei, wenn du gern liest. Dort findest du eine breite Auswahl an Büchern die sowohl technisch als auch gesellschaftlich nah am Thema Künstliche Intelligenz dran sind. Außerdem gibt es auf Machine Rockstars noch eine Liste mit Machine Learning Büchern und weiterführenden Büchern.

Meetups

Wenn du dich gern zum Thema Künstliche Intelligenz, Data Science und Robotik austauschen willst, sind Meetups natürlich ein sehr gutes Format um sich mit einer lokalen Community zu vernetzen. Eine Auflistung dieser Meetups findest du auf Machine Rockstars.

Podcasts

Ein weiterer beliebter Kanal für die Aggregation von neuem Wissen sind Podcasts. Dort reden meist Experten zu Forschungen und Neuheiten rund um das Thema Künstliche Intelligenz. Für jeden der gern zuhört und so besser lernen kann, ist die Liste der KI / ML Podcasts zu empfehlen.

Aktien und Anlagen

Was das Thema Anlagen angeht, habe ich hier bereits einige Anlageideen publiziert. Diese hab ich in langer Recherche gesammelt. Schau also mal bei Aktien & ETFs für Künstliche Intelligenz rein.

Machine Learning 101

Der Machine Learning 101 Report bringt euch auch einen schnellen Kickstart in das Thema Machine Learning. Dadurch lernt ihr, wie ihr relativ schnell ein Datenset lernen könnt und was Machine Learning bedeutet.

Lets go

Nun könnt ihr loslegen und euch tiefer in das Thema Künstliche Intelligenz graben. Viel Erfolg dabei!