Month: March 2017

5 coole Anwendungen für Deep Learning

Viele halten es für einen Hype, aber es gibt auch Anwendungen, in denen Deep Learning uns schon ernsthaft helfen kann. Egal ob im Bereich Computer Vision, Natural Language Processing oder Creation, Deep Learning Anwendungen werden in den nächsten Jahren immer häufiger auftreten. Hier ein paar Anwendungen, die aktuell schon möglich sind.

1. Bring deinem Auto bei, wie ein Mensch zu lenken

Es ist kein Problem mehr, ein eigenes Auto dazu zu bringen, zu lenken wie ein Mensch. Das einzige, was man dazu braucht, ist etwas Technik, ein Auto, ein paar Kameras und dieses Paper als Bauanleitung. Damit kann jeder ein selbstfahrendes Auto nachbauen. Das ganze läuft mit Torch 7. Eine gute Simulationsumgebung hierfür ist dann wohl Grand Theft Auto.

2. Bau dir ein intelligentes Tagging-System für deine Bilder

Resultate von Projekt deepimagesent. Credits: Stanford.edu

Resultate von Projekt deepimagesent. Credits: Stanford.edu

Bilder zu beschreiben, haben Deep Learning Netze ebenfalls gelernt. Besonders spannend wird es, wenn man eine große Bildersammlung hat und nun herausfinden will, was in diesen Bildern enthalten ist. Dazu bieten sich verschiedene Programme u.a. NeuralTalk von Andrej Karpathy an. Wie das Ganze funktioniert, lernt man hier (sogar mit passender Demo).

 

3. Male wie ein richtiger Künstler

neural-doodle

Beispiel von Neural Doodle. Credits: alexjc

Neural Doodle heißt das Tool. Man kann mit den, für eine Landschaftszeichnung üblichen, Farben ein Bild malen. Danach transformiert ein Netz das simple Bild in ein Kunstwerk. Dabei nutzt das Netz die Farbkombinationen als Annotation und versucht aus diesen Annotationen das ursprüngliche Kunstwerk wieder herzustellen. Dabei kann man zwischen verschiedenen Stilen wählen. Es hängt ganz davon ab, was man dem Netzwerk zeigt.

 

4. Entwickle deinen eigenen Font

Eigene Fonts entwickeln mit deep-fonts. Credits: erikbern

Eigene Fonts entwickeln mit deep-fonts. Credits: erikbern

Jeder Designer hat schonmal eine Schrift benötigt, die genau nach seinen Wünschen aussieht. Wie wäre es mit einer grafischen Oberfläche, auf der man verschiedene Regler nach links und rechts schieben kann. Was man erhält sind verschiedene Fonts, die das Neuronale Netz passend zu den Eingaben anpasst.

50.000 Schriftarten hat der Autor von deep-fonts benutzt, um das Netzwerk zu trainieren. Hier erhält man den Code und das trainierte Netz für die eigenen Spielereien.

5. Höre und komponiere klassische Musik

Neuronale Netze komponieren sogar Musik. Sie klingt bereits so, als würde jemand am Klavier sitzen und nur persönlich für uns spielen. Damit können in der Zukunft auch professionelle Komponisten und Interpreten ihre Musik von einer KI überarbeiten lassen oder sogar einem Mastering unterziehen. Das ist besonders spannend für Musiker, die noch kein Plattenlabel haben und trotzdem ein Platte in ordentlicher Qualität produzieren wollen. Vielleicht ist das sogar noch eine Marktlücke. 😉 Nachfolgend könnt ihr hören, wie das klingen kann. Mehr Infos dazu findet ihr hier.

5 weitere Anwendungen für Deep Learning lest ihr in unserem zweiten Teil der Serie.

 

Kann man Nachhaltigkeit automatisieren?

Das Thema Nachhaltigkeit beschäftigt immer mehr Menschen. Wie groß ist der eigene Footprint?  Was kann ich tun, um Nachhaltigkeit zu fördern? Diese Fragen stellt man sich – zurecht. Allerdings benötigt man auch sehr viel Zeit, um sich mit dem Thema auseinander zu setzen. Aber kann man Nachhaltigkeit automatisieren?

ZenRobotics definiert den State of the Art

Recycling-Robots-ZenRobotics-1ZenRobotics aus Helsinki hat sich genau dieses Thema zur Mission gemacht. Sie produzieren Roboter, welche Müll trennen und damit helfen, Rückführungsprozesse zu verbessern. Ihr Produkt heißt ZRR (ZenRobotics Recycler). Dabei wird das Material gescannt, analysiert und der Objekttyp sowie dazugehörige Eigenschaften erkannt. Danach kann der Recycler das Material je nach Konfiguration trennen. Installiert man das System mit zwei Roboterarmen, kann es 67 Mal in der Minute auf das Förderband zugreifen.

Liam – Der Apple Recycler

Liam baut alte iPhones (oder andere Apple-Produkte) auseinander. Es ist der Ansatz von Apple, Nachhaltigkeit im Produktzyklus zu etablieren. Dabei kann ein neues Produkt aus den restlichen funktionierenden Teilen wieder zusammengesetzt werden oder aber für die Entwicklung eines neuen Produktes genutzt werden.

Aus einem alten iPhone lassen sich beispielsweise seltene Materialien wie Nickel, Aluminum, Kupfer, Cobalt und Wolfram gewinnen. Laut DoSomething.Org werden jedes Jahr 20 bis 50 Millionen Tonnen Müll produziert. Anfang 2016 ging Apple mit Liam an die Öffentlichkeit und hat damit neue Maßstäbe gesetzt.

Was passiert, wenn Roboter recyclt werden müssen?

Das ist eine spannende Frage, denn auch die Roboter und Rechentechnik, die unseren Müll recycelt, kann recycelt werden. Aber wie? IQeol ist eine Organisation, die alte WEEE (also “Elektroschrott”) in Regionen verteilt, die diese Geräte noch benutzen können. Es ist also dafür gesorgt, dass sogar die Recycler recycelt werden können. Dabei fokussiert sich IQeol vor allem auf Afrika.

Was bleibt?

Oft gibt es das Problem, dass man nicht weiß, was nach der Mülltonne auf den Müll wartet. Das motiviert nicht wirklich, den Müll langfristig konsequent zu trennen. Wenn man es schaffen würde, diesen Prozess transparenter zu machen und dem Müllproduzenten die KPIs (Kennzahlen) online präsentieren kann, schafft man damit auch ein Bewusstsein für die Müllproduktion einer Region, einer Stadt oder eines Landes. Durch Roboter, die in der Lage sind, alles zu messen, werden auch Zahlenwerte greifbarer und beeinflussbarer.

Als Mitglied des WWF möchte ich hier nochmal auf den WWF Environmental Footprint Calculator hinweisen.

Thinking, Fast and Slow – Ein Buchtipp für KI-Forscher

Thinking, Fast and Slow von Daniel Kahnemann stand schon länger auf meiner Wunschliste. Von vielen Seiten wurde mir versprochen, dass es genau dieses Buch ist, was angehende Wissenschaftler lesen sollten. Also habe ich es mir vorgenommen und geschaut, ob es hält, was viele Kollegen versprochen haben.

Das Buch beginnt mit einer Einführung zu den beiden System, also dem mehr affektiv handelnden System I und dem langsamen und faulen System II. Zweiteres ist jedoch dazu ausgelegt, komplex zu denken und Fakten zu checken. Wie umfangreich und aufwändig ist das die Benutzung von System II und wie oft nutzt man es? Das Gehirn ist eine assoziative Maschine (er nennt es so, allerdings ist Maschine ein sehr technikorientiertes Wort, assoziatives System wäre hier etwas abstrakter und würde für weniger Verwirrung sorgen). Das Kapitel beschäftigt sich außerdem damit, wie wir Entscheidungen treffen und welche weiteren Optionen zur Entscheidungsfindung existieren.


Das ganze Buch ist durchzogen mit kurzen Beispielen, um den Leser ebenfalls bei einigen Denkfehlern zu ertappen. Im zweiten Kapitel geht es um Statistiken und Denkfehler, die vor allem dabei passieren, wenn man mit kleinen Zahlen und Mengen auf Größere schließt oder wenn Emotionen sowie persönliche Präferenzen im Spiel sind. Risiken werden oftmals von uns unterschätzt, weil wir in die Vergangenheit schauen und meist annehmen, wir würden alle Parameter kennen. In der Wissenschaft nennt sich dieser Effekt “Overconfidence”. Das ist auch der Titel des 3. Kapitels, das sich mit den Illusionen und dem Verstehen der Umwelt beschäftigt. Eine wertvolle Quintessenz aus diesem Teil des Buches wird schnell klar. Wir benötigen sehr oft eine vertrauensvolle aber ehrliche Sicht von außen, die uns hilft unsere Entscheidungen zu reflektieren. Nach diesem Exkurs über die Wahrnehmung geht es um die Wahl. Eine Wahl zu haben, bedeutet zu allererst, dass man mehrere Optionen zur Auswahl hat. Es werden Theorien und Fallstricke vorgestellt, die uns bei der Entscheidung zwischen mehreren Optionen im Wege stehen. Welche Fragen zu stellen sind, um diesen Fallstricken zu entgehen sind, verrät das Buch auch. Im generellen spielt die Wahrnehmung und die Warhnehmungstäuschung in diesem Buch eine große Rolle. Ein Abschnitt in diesem Kapitel handelt beispielsweise von Framing und wie verschiedene Frames die Realität verändern. Das letzte Kapitel stellt danach die beiden Persönlichkeiten vor, die in einem Menschen wohnen. Auf das wesentlichste reduziert, kann man sagen, die erste Persönlichkeit ist ein emotionaler und affektive Entscheider. Im Gegensatz dazu ist die andere Persönlichkeit eher ein rationaler Denker, der andere aber nur bedingt bessere Entscheidungen trifft. Zudem verbraucht der rationale Denker sehr viel Energie und Aufmerksamkeit.

Was kann ich daraus lernen?

Nach dem Lesen des Buches stellt man auf jeden Fall fest, dass man bewusster entscheidet. Man denkt fast automatisch darüber nach, ob System I oder II eine Entscheidung getroffen hat und was der richtige Weg gewesen wäre. Außerdem analysiert man Fallstricke häufiger, lässt sich für Entscheidungen mehr Zeit und kann nach der Entscheidung seine Argumentationslinie sauberer darlegen. Vieles war für mich nicht neu, die Fakten und Biases existieren schon länger, allerdings macht zusätzlich zum präsentierten Wissen die Erfahrung des Autors und Nobelpreisträgers Daniel Kahnemann das ganze Buch zu einem runden Konzept. Er schreibt einige Erkenntnisse aus seiner persönlichen Sicht und zeigt auch auf, was der Ausgangspunkt für dieses oder jenes Experiment war. Besonders als (werdender) Wissenschaftler liest sich das Buch sehr spannend.

Take-Away: Was bleibt?

    • Mach dir klar, dass du immer die Wahl hast, zwischen affektivem und bewussten Entscheiden zu wählen.
    • Denke immer über mögliche Fallstricke nach, die deine Entscheidungen negativ beeinflussen können.
    • Prüfe Risiken, die aus deinen Entscheidungen folgen können.
    • Sei dir bewusst, das du prinzipiell immer zu wenig Informationen hast, um dich richtig zu entscheiden.
    • Lerne deine Entscheidungen einzuschätzen. Agierst du eher risikoavers oder verlustavers? Und warum ist das so? Reflektiere die Entscheidungen, um festzustellen, was dir deinen Entscheidungen zugrunde liegt.
    • Erlaube dir selbst, mehrere Entscheidungen durchzuspielen und in jeder die positiven sowie negativen Aspekte zu sehen.

Hier gehts zum Buch von Daniel Kahnemann.