Von der Bitmap zum Kunstwerk
[caption id="" align="alignleft" width="491"] Credits: github/alexjc[/caption]
Mit Neural Doodle ist es möglich aus einer einfachen Bitmap ein komplexes Kunstwerk zu machen. Das funktioniert mit semantischen Transfer-Learning. Das spannende ist, dass die Maschine die Bedeutung im Bild einschätzen kann und das Bild dann so komponiert, wie es passen sollte. Diese Parameter können noch einem Tuning unterzogen werden, wodurch die abstraktesten Bilder entstehen können.
Das schwarzweiße Farbbild
[caption id="" align="alignright" width="549"]
Credits: github/pavelgonchar[/caption]
ColorNet hilft dabei, Schwarzweiß-Bildern wieder Leben einzuhauchen. Auch hier kommt semantisches Transfer-Learning zum Einsatz. Mit einer selbstgemalten Bleistiftskizze könnte man somit schnell ein schönes coloriertes Bild erhalten.
Semantisches Bildverständnis
Das der Algorithmus nicht nur nach einem Regelset arbeitet, sondern semantische Beziehungen lernt, ist hier besonders wichtig. Damit kann man in Zukunft durchaus spielen. Bilder könnten dann merkwürdige, surreale oder anstößige Situationen komponieren. Apropos komponieren, auch für Texte sowie Musik gibt es spannende Modelle.
Der Geschichtenerzähler
[caption id="" align="alignright" width="363"]
Credits: github/ryankiros[/caption]
Ein einfaches Bild genügt als Input und der
Neural-Storyteller erzählt dir eine Geschichte zu dem Bild. Ein gut dokumentierter Urlaub würde ausreichen, um eine spannende Geschichte zu erzählen. Vielleicht kann man dabei sogar seinen Urlaub noch einmal durch eine Maschine reflektieren. Was aber viel wichtiger ist: man kann erlebtes oder eben nicht erlebtes in Bildern ausdrücken und so den Zugang zu einer Story finden.
Klingt das nicht spannend? Filme könnten wie Bücher wahrgenommen werden, sogar für blinde Menschen ist das spannend.
Predictive Music
[caption id="" align="alignleft" width="380"]
Credits: github/jisungk[/caption]
Ein Blick in die Zukunft der Musik gibt
Biaxial-RNN-Music und
DeepJazz. Musik kann aus verschiedenen kleinen Patches von Musikstücken komponiert werden. Weiche Übergänge, harte Übergänge, dramatisch oder entspannt. Das alles kann der Algorithmus leisten. So könnte in Zukunft Musik komponiert werden. Musik könnte somit vom linearen Medium zum personalisierten Erleben werden. Spannend, wenn man bedenkt, dass viele Medien aktuell von linear zu personalisiert wechseln und somit immer mehr Menschen und Zielgruppen ansprechen.
Was bleibt?
Für Künstler entstehen in diesen Tagen viele Tools, die ihnen helfen können, über ihre Kunst zu reflektieren. Was sieht der Algorithmus in meiner Kunst? Wie interpretiert er sie? Außerdem können diese Algorithmen helfen, denn richtig eingesetzt, fördern sie die Kreativität der Künstler. Kunst und Künstliche Intelligenz kann Hand in Hand gehen. Kunst könnte sich vom linearen Medium zum personalisierten Erleben verschieben und somit für verschiedene Zielgruppen viel interessanter werden. Auch in der Werbung könnten diese Algorithmen Anwendung finden: personalisierte Sounds, Bilder und Texte, die sich je nach Person und deren Einstellung sowie Emotionen verändert.
Künstliche Intelligenz ist für die Kunst ein interessantes Reflektionsmedium!]]>