Category: News

Volkswagen Cariad holt sich 60% an Horizon Robotics

Die Partnerschaft hilft dem Volkswagen Konzerns bei der Beschleunigung der Bestrebungen zum Autonomen Fahren in China. Volkswagen Group investiert in eine Kooperation mit Horizon Robotics, einem führenden Anbieter von energieeffizienten Computerlösungen für intelligente Fahrzeuge. Im Rahmen der Kooperation beabsichtigen CARIAD und Horizon Robotics die Gründung eines Joint Ventures in China, an dem CARIAD eine Mehrheitsbeteiligung von 60 % halten wird.

#5vor12 – FTS-Experten von WAKU Robotics (AMR, AGV)

Die Zeit ist reif fĂĽr die Automatisierung mit mobilen Robotern. WAKU Robotics hilft Unternehmen aus der Logistik und Produktion dabei, mobile Roboter (FTS, AMR, AGV) einzusetzen.

Im aktuellen Video von WAKU Robotics spricht CEO Victor Splittgerber ĂĽber die neusten Entwicklung in der Branche mobiler Roboter, fĂĽhrende Unternehmen und welche Optionen es gibt, um einfach zu starten.

#decompiled20 – DecompileD – Die Entwicklerkonferenz in Dresden

Am 27. März findet zum 2. Mal die Entwicklerkonferenz DecompileD in Dresden statt. Im OSTRA-DOME werden dann Hunderte Developer und Software Engineers, aber auch Startup-GründerInnen, StudentInnen, Product Owner sowie EntscheidungsträgerInnen der IKT-Branche erwartet. Zahlreiche namhafte Unternehmen, wie Google, Amazon Web Services, Flix Bus, Vodafone, Cloud & Heat, Wandelbots u.v.m., sind mit eigenen SpeakerInnen und ExpertInnen vor Ort. Selbst aus Norwegen und Israel reisen SprecherInnen an. In insgesamt 26 Beiträgen in zwei Tracks beleuchten Spezialisten ihres Fachs im Rahmen der sächsischen Anwenderkonferenz unterschiedliche Aspekte in den Bereichen Mobile, Cloud Engineering sowie Machine Learning.

Die Softwaresparte wächst. Und das nicht nur in Sachsen. Kaum ein Bereich – ob in Industrie, Wirtschaft, Wissenschaft, Forschung oder öffentlicher Hand – kommt heute noch ohne jene Zeilen Code aus, die Maschinen effizient, Roboter handlungsfähig, Autos multimedial, das Internet interaktiv oder das eigene Handy smart machen. Developer und Software Engineers, einst eher abfällig als Nerds umschrieben, sind inzwischen heiĂź begehrt – teils echte Stars, auch auĂźerhalb ihrer Szene. Gegenwart und Zukunft brauchen smarten Code. Den Herausforderungen von morgen wird schon heute digital begegnet.

Ein Indiz: Allein in Sachsen verdoppelte sich die Mitarbeiterzahl des Bereiches Software in den vergangenen zehn Jahren in etwa von 12.000 in 2008 auf 28.000 in 2018. Tendenz: Weiterhin stark steigend.

Grund genug fĂĽr LOVOO, einem der namhaften Softwareanbieter des Freistaates Sachsen, 2018 erstmals ein eigenes Standortevent fĂĽr die Branche zu schaffen. 270 TeilnehmerInnen machten die DecompileD in ihrem Premierenjahr aus dem Stand zum Erfolg. Damals noch im Parkhotel Dresden sah sich die Entwicklerkonferenz als die Plattform um Fragen wie:

  • Wie migriert man eine Plattform zur AppEngine von Google?
  • Welche Herausforderungen gibt es bei der Virtualisierung in die Cloud?
  • Welchen Einfluss hat Big Data und darauf basierende Analysen auf den Unternehmensalltag?
  • Welche Rolle wird Machine Learning auf dem Smartphone kĂĽnftig spielen?

zu beantworten. Die DecompileD 2020 widmet sich nun den neuestens Trends. Ob AI-based Algorhythms, Cognitive Business, Robotics, Kotlin Multiplatform, Azure, API Management, Kubernetes, Flutter, Mobile Development oder BigData Migration – das Programm der DecompileD 2020 lässt kaum Entwicklerwünsche offen.

In diesem Jahr sind SpeakerInnen wie z.B.:

  • Nils Heuer, Global Solutions Architect Volkswagen Group | Amazon Web Services
  • Martin Splitt, Developer Advocate | Google
  • Vladimir Jovanovic, Senior Android Engineer | Flixbus
  • Lilli Landmann, Design Operator | Startnext GmbH
  • Julian Eberius, Senior Architect – Big Data | Vodafone Group Plc
  • Mey Beisaron, Backend Developer | AppsFlyer Inc.
  • Christoph Biering, Head of AI & Co-Founder | Wandelbots GmbH
  • Sven Malvik, Team Lead Cloud Platform | Vipps AS
  • Toni Das, Machine Learning Engineer | AI4BD Deutschland GmbH

dabei. Das Programm der DecompileD 2020 ist bereits online. Die Anmeldung läuft auf vollen Touren. Nutzen auch Sie die Möglichkeit, sich am 27. März im OSTRA-DOME Dresden, sich hochkarätig zu vernetzen. Sichern Sie sich noch heute Ihr persönliches Veranstaltungsticket.

DecompileD Conference auf einen Blick

  • Datum: Freitag, 27. März 2020
  • Ort: OSTRA-DOME & Studios, Zur Messe 9 A, 01067 Dresden
  • Themen / Tags: Mobile, Cloud, Machine Learning / Fachkonferenz, Tech, Event, Dresden
  • Detaillierte Informationen und Tickets: https://www.decompiled.de

DecompileD Conference in den Social Media

WeiterfĂĽhrende Links

www.decompiled.de  

 

Pressemitteilung vom Silicon Saxony.

Foto: DecompileD 2018

Travis Bott – KĂĽnstliche Intelligenz meets Hip Hop

Travis Scott (ein HipHop-KĂĽnstler) hat zusammen mit seiner Agentur einen Song von einem Deep Learning Netz generieren lassen. Dabei wurde das Netz mit Texten und Videos von Travis Scott trainiert. Die generierten Lyrics hören sich zwar nach Travis Scott an, besitzen aber an einigen Stellen keinen Zusammenhang und sind Unsinn. Der Songtitel lautet: “Jack Park Canny Dope Man“.

Trotzdem fand das Netz einen Weg, den Stil von Travis Scott identisch zu kopieren. Am Ende des Tages bleibt TravisBott ein cooler PR-Coup der Agentur space150. Aber der PR-Coup bringt die Diskussion wieder auf, wie gut KI heutzutage schon menschliche Kunst adaptieren beziehungsweise imitieren kann.

Unter Music Processing Data Sets haben wir Datensets für euch vorbereitet, falls auch ihr einen Travis Bott bauen wollt.

 

 

Software Track “Digital Entrepreneurs” auf dem Silicon Saxony Day

Der Silicon Saxony bringt auch in diesem Jahr Experten der Hochtechnologiebranchen zum 13. Silicon Saxony Day am 29.05.2018 in Dresden zusammen. Unter dem Motto “HARDWARE.SOFTWARE.CONNECTIVITY.” bietet die Veranstaltung eine ausgezeichnete Plattform fĂĽr den Austausch von Ideen und Trends fĂĽr zukĂĽnftige Informations- und Kommunikationstechnologien.

Speziell fĂĽr die Software Branche hält das Programm in diesem Jahr einige sehr spannende Inhalte bereit. So richtet der AK Software erstmalig den Track “Digital Entrepreneurs” aus. Hochkarätige Referenten berichten ĂĽber unternehmerische Herausforderungen sowie aktuelle Trends:

  • Jens Gärtner / SQL Projekt AG, Top KPIs everyone should know: Roadmap to a holistic management dashboard
  • Dirk Richter / Preh Car Connect GmbH, Talent recruiting for small & medium-sized businesses
  • Jörg Hastreiter / T-Systems Multimedia Solutions GmbH), Experiences from leading an enterprise DevOps transformation program
  • Sven Schubert / Netcentric Deutschland GmbH, Holacracy – Working in a responsive organization
  • Torsten Hartmann / Avantgarde Labs GmbH, Artificial intelligence in action
  • Dr. Martin Rößiger  / Qoniac GmbH, Distributed teams across borders – setup, kickoff and challenges
  • Klaus Eck / d.Tales GmbH, Speak about your Company – Content Marketing Strategies for Talent Recruiting
  • Florian Braunschweig / LOVOO GmbH, How to manage change? The story of a pervasive organisational transformation

Neben weiteren Expert Sessions steht als Highlight eine Keynote von Robert Panholzer auf dem Programm. DarĂĽber hinaus sorgen die erstmalig stattfinde Demo Jam zum Thema “Human Machine Interaction”, Speed Dating fĂĽr Unternehmen und Studenten sowie die abschlieĂźende Club Night fĂĽr einen spannenden Tag. Eine Teilnahme lohnt sich also in jedem Fall.

Die Early Bird Registrierung zu Sonderkonditionen ist noch bis zum 29. April möglich. Tickets können auf der Seite des Silicon Saxony gebucht werden. Wir freuen uns auf den Tag und hoffen viele Kollegen, Bekannte und Interessierte begrüßen zu dürfen.

Quelle: PM von Silicon Saxony

5th #MLDD – Signals from outer Space

IMG_0076Am 08.05.2018 fand in den Gebäuden der LOVOO GmbH das 5. MLDD – Machine Learning Meetup statt. Diesmal zeigte Vlasta Kus von GraphAware den 75 Teilnehmern, wie man mit der NASA Lessons Learned Datenbank (eine Datenbank mit Review-Dokumenten) und etwas NLP einen Graphen entwerfen kann, der bei der Wissensrepräsentation hilft. Dies geschieht mit neo4j, einer Graphendatenbank, die umfangreiche Visualisierungsoptionen bietet.

Vlasta zeigte außerdem diverse Optionen, wie man das bestehende Verfahren noch verbessern kann sowie erweiterte Möglichkeiten bezüglich Deep Learning und Natural Language Processing. Auch ergaben sich einige Fragen zu Anwendbarkeit der gezeigten Modelle.

Du interessierst dich auch fĂĽr das MLDD? Hier findest du die Meetup-Gruppe zum MLDD.

ML Conference 2018 in München – Das Programm ist online

Vom 18 bis 20. Juni geben international führende IT-Experten bei der zweiten Machine Learning Conference im Münchener Sheraton Arabellapark Hotel einen umfassenden Einblick in die Welt des Maschinellen Lernens und der Künstlichen Intelligenz. Die Konferenz bietet insgesamt über 35 Sessions, Keynotes und Workshops mit den drei parallelen Tracks “Business & Strategy”, “Machine Learning Tools & Principles” und “Machine Learning Advanced Development”. Über 35 Speaker, u.a. Canburak Tümer (Turkcell), Constantin Gonzalez (Amazon Web Services Germany), Marisa Tschopp (SCIP AG), Laurent Picard (Google), Daniel Wrigley (SHI) und Alison Lowndes (NVIDIA) präsentieren die neusten technologischen Entwicklungen aus Forschung und Industrie.

Unter anderem können die Teilnehmer aus den folgenden Sessions wählen: 

  • „Deep Learning in Telecommunication“ (Burak Isikli, Turkcell)
  • „Deep Learning Dive into the Graphics World“ (Muzahid Hussain, Dassault Systems 3d Excite)
  • „Boost your app with Machine Learning APIs“ Laurent Picard (Google)
  • „AI really is all that!“ Alison Lowndes (NVIDIA)
  • „Amazon SageMaker: Building, Training and Deploying Machine Learning Models Efficiently and at Scale“ Constantin Gonzalez (Amazon Web Servives Germany)
  • „Natural Language Support with LUIS“ Rainer Stropek (software architects / www.IT-Visions.de)

Am ersten Tag haben die Teilnehmer die Möglichkeit, drei ganztägige Praxis-Workshops zu besuchen. Im „AI Product Workshop“ wird Luis Rodriguez (Teknolog IO) mithilfe von realen Fallstudien eine Reihe von Techniken zur Gestaltung mit maschinellen Lerntechnologien veranschaulichen. Xander Steenbrugge (ML6) führt in seinem Workshop „Deep Learning with TensorFlow“ in die Grundlagen von Googles Deep Learning Bibliothek ein wird anhand von praktischen Beispielen den Umgang mit diesem Tool üben.

Abgerundet wird das Programm von drei Keynotes, u.a. zu dem Thema „Cracking open the Black Box of Neural Networks“ von Xander Steenbrugge (ML6), und dem Get-together, bei dem die Teilnehmer bei Freigetränken und Snacks die Möglichkeit zur Vernetzung und zum Austausch haben.

 Das ganze Programm kann ab sofort online eingesehen werden unter: https://mlconference.ai/program. Weitere Informationen und Tickets finden Interessenten unter: https://mlconference.ai/

(PM von sandsmedia)

Cloud, Machine Learning und Mobile – Die DecompileD Conference in Dresden

decompiled_conference-logoAm 6. April findet im Dresdner Parkhotel die 1. DecompileD Conference statt. Die Themen auf der Konferenz sind Mobile Development, Cloud Infrastructure und Machine Learning.

Die Referenten berichten unter anderem, wie man auf Mobile-Applikationen Machine Learning benutzen kann und wie ganze Plattformen auf Cloud Plattformen umgezogen wurden. Insgesamt werden 19 Talks gezeigt.

Die Teilnehmer erwartet ein tolles Event mit zwei parallelen Tracks. Außerdem wird es eine Meetup-Expo geben, auf der sich regionale und überregionale Meetups präsentieren. Begleitet wird die Konferenz mit ansprechendem Catering vormittags, mittags sowie abends.

Für ein würdiges Ende der Konferenz wird eine Aftershow-Party mit vielen Specials sorgen. Ihr habt noch kein Ticket?

Spart 15% und nutzt den Rabattcode “MACHINEROCKSTARS” bei der Bestellung eures Tickets.

Hier gehts zur DecompileD!

Welche Deep Learning Frameworks gibt es?

Stand Deep Learning Frameworks 2017. Credits: Indra den Bakker

Stand Deep Learning Frameworks 2017. Credits: Indra den Bakker

Wie sah die Landschaft der Deep Learning Frameworks im abgelaufenen Jahr 2017 aus? Die 5 großen Player Google, Microsoft, Amazon und Facebook stecken hinter den bekanntesten und meist benutzten Frameworks.

Was wird das Jahr 2018 bringen? Einige Zeichen stehen auf Konsolidierung der Frameworks, Entwicklerteams von einigen Frameworks wollen sich sogar anderen Entwicklern anschlieĂźen, um ein neues Framework zu bauen.

Mehr dazu lest ihr im Artikel von Indra den Bakker

 

Der 34C3 – Spannende Machine Learning Videos

Der 34. Chaos Communication Congress des CCC fand in Leipzig statt. Wir haben für euch alle wichtigen Vorträge gesehen und euch die 3 relevantesten Machine Learning Talks hier verlinkt. Viel Spaß!

 

Beeinflussung durch KĂĽnstliche Intelligenz

Social Bots, Fake News und Filterblasen

Deep Learning Blind Spots

So funktioniert Recommendation bei Spotify

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Empfehlungssystemen begegnet man überall im Internet. Auch bei Spotify arbeitet man mit State-of-the-Art Systemen im Bereich Recommendation.

Drei verschiedene Systeme werden bei Spotify dazu benutzt, um euch die Musik vorzuschlagen, die euch sehr wahrscheinlich gefallen könnte.

Dabei bedient sich Spotify an Metadaten der Tracks, liest die Logs der gespielten Musik und durchsucht sogar Blogs und News nach verschiedenen Artikeln. Diese Informationen werden dann benutzt, um euch einen neuen Track zu empfehlen.

Diese 3 Methoden benutzt Spotify

Kollaboratives Filtern – “Wer X gehört hat, hat auch Y gehört.” Amazon nutzt beispielsweise Kollaboratives Filtern, um euch zu zeigen, welche Produkte jemand noch gekauft hat, der ähnliche Produkte wie ihr kaufte. Das funktioniert zum Beispiel ĂĽber Matrixfaktorisierung.

Natural Language Processing – Die Songtexte und Beschreibungen werden mit Natural Language Processing durchsucht und nach SchlĂĽsselwörtern sortiert. Ă„hnliche Textpassagen und Phrasen sprechen fĂĽr eine Ă„hnlichkeit. Schwierig wird es, wenn der Track sehr wenige bis garkeine Lyrics enthält. DafĂĽr gibt es noch eine dritte Form der Recommendation.

Audio Material – Auf den reinen Audiosignalen wird ein neuronales Netz (Deep Learning) angewandt. Dieses Netz erkennt Ă„hnlichkeiten in den Frequenenzen. Es nutzt auch weitere Features, um die Ă„hnlichkeit eines Songs zu bestimmen. So kann man vor allem Songs bewerten, die ĂĽber keine Lyrics verfĂĽgen und bisher selten gehört wurden (also keine Chance fĂĽr Kollaboratives Filtern hätten).

Ihr findet das Thema spannend? Hier gibt es den längeren Artikel dazu.

#MLDD – Das 3. Dresdens Machine Learning Meetup – Startup Edition

Am 26.10.2017 fand in den Räumen der LOVOO GmbH das 3. Meetup der MLDD (Machine Learning Meetup Dresden) statt. Diesmal präsentierten sich 3 Startups aus Dresden, deren Produkte auch Machine Learning einsetzen.

IMG_7611

Polylith zeigt, welche Aufgaben Machine Learning bei ihnen löst.

Diese 3 Startups haben sich präsentiert:

  • Evomo: Fitness 5.0 ist die Devise von Evomo. Das Startup entwickelt eine App, die eure Workouts ĂĽberwacht. Nach dem Workout kann euch die App direkt sagen, wieviele Kniebeuge, LiegestĂĽtze und weitere Ăśbungen ihr in diesem Workout gemacht habt. Ihr wollt mehr Infos zu Evomo? Klickt hier!
  • Polylith: Aktuell gibt es einige Firmen, die Probleme durch einen “Crowd-Based” Ansatz lösen wollen. Polylith lagert die (test-driven) Software-Entwicklung an die Crowd aus. Sie nutzen Machine Learning, um die Qualität des Codes (und damit auch die Qualität der Crowd-Worker) festzustellen. DafĂĽr haben sie clevere Annotations-Tools entwickelt. Klingt spannend? Hier erfahrt ihr mehr zu Polylith!
  • Amonilyzer: Die Jungs vom Amonilyzer sind in der Halbleiter-Industrie unterwegs. Sie wollen die Standzeiten / Reparaturzyklen der kleinen Transporter optimieren, die in einer Fabrik von A nach B fahren. DafĂĽr nutzen sie historische Daten. Amonilyzer ist aktuell nur ein Projektname. Man wird von den Jungs in der Zukunft noch viel mehr hören.

IMG_7609

75 Teilnehmer waren zur 3. Auflage des Machine Learning Meetups (MLDD) gekommen. Neben einigen akademischen Teilnehmern waren auch viele Teilnehmer aus der Wirtschaft dabei. Auch Studenten und technisch-interessierte Menschen haben den Weg zum Meetup gefunden.

Ihr wollt das Machine Learning Meetup in Dresden auch besuchen? Tragt euch auf Meetup ein und erhaltet alle Neuigkeiten ĂĽber das MLDD.

Adikteev – Dynamische Anzeigen erstellen – Dynamic Creative Optimization

Immer mehr Anzeigen werden dynamisch erstellt. Dabei orientieren sich die Anzeigenmacher an den Informationen, die sie ĂĽber den Nutzer sammeln konnten. Daten aus der Vergangenheit und seine demographischen Spezifikationen helfen einem Dynamic Creative Optimization (DCO) System dabei, eine Ad fĂĽr ihn zu generieren.

Dabei geht es vor allem um die Optimierung von:

  • Call to Action
  • Hintergrund
  • Wahl des Produktfotos
  • Animationen
  • Sättigung und Farbgebung

Die Firma Adikteev entwickelt solch ein System. Dieses System soll laut Angaben eine 50% höhere Conversion-Rate gegenüber der Testgruppe erzeugen. Getestet wurde das System bereits bei Gaming-Apps und Content-Portalen. Weitere Infos gibt es hier.

 

Text to Emoji mit DeepMoji vom MIT Media Lab

DeepMoji wurde vor ein paar Tagen vom MIT Media Lab gelauncht. Die KI erkennt, wenn ein einem Text Emotionen vorkommen – sogar Sarkasmus. Der geschriebene Text wird auf Emojis gemappt, die am besten zum Text passen. Gelernt wurde DeepMoji auf mehreren groĂźen Corpora.

Hier gehts zum Paper von DeepMoji




Mit einem Bot und Fotolia Geld verdienen

strange_phone_case2

Beispiel einer vom Bot erstellten HandyhĂĽlle mit StrapOn. Quelle: OnlineMarketingRockstars

Wie OnlineMarketingRockstars berichtet, hat der deutsche Software-Hersteller ToasterNet mit einem Nebenprojekt auf Amazon für Furore gesorgt. Mittels eines Bots wurden Designs von Handyhüllen erstellt. Die Fotos kamen vom Stockfotodienst Fotolia. Die Beschreibungen der Bilder soll ein Bot in Amazon-Suchbegriffe umgewandelt haben und so automatisiertes Suchmaschinenmarketing (SEA) betrieben haben. Insgesamt sollen dabei 30.000 Artikel (verschiedene Motive für verschiedene Handytypen) erstellt worden sein.

Beispiel einer vom Bot erstellten HandyhĂĽlle. Quelle: OnlineMarketingRockstars

Beispiel einer vom Bot erstellten HandyhĂĽlle. Quelle: OnlineMarketingRockstars

Auch etwas untypische Motive wie ein Strap-On oder ein Fußzehen, welche von Fußpilz befallen wurden, waren im Shop erhältlich. Ob der Bot nun aus dem Ruder lief oder Geschäftssinn bewies, bleibt noch zu klären.




Allerdings zeigt dieses Geschäftsmodell wiederum den aktuellen Trend, mit Arbitrage-Modellen Geld zu verdienen. Produkte werden über Ali Baba günstig eingekauft, mit einem eigenen Label oder Motiven versehen und dann auf Amazon teurer weiter verkauft.

Wird Dynamic Pricing das Online Business revolutionieren?

Die ersten Algorithmen, die sich mit dynamischen Preisen befassten, waren noch sehr rudimentär. Durch die Medien ging 2011 ein fataler Fehler beziehungsweise ein potentieller Lucky Shot. Zwei Drittanbieter haben auf Amazon das gleiche Buch angeboten. Der simple Algorithmus konnte damals noch überlistet werden und das Buch kostete 23 Mio. US-Dollar.

Mehr AbschlĂĽsse durch Kompensation

money-coins-stack-wealth-50545Sowas darf natĂĽrlich nicht passieren – aber es passierte – warum? Die ersten Algorithmen zu diesem Thema widmeten sich vor allem der Konkurrenz. Wie viel Geld wird verlangt, wie lange gilt das Angebot, gibt es Rabatte oder Aktionen? Nach dem man sich von dieser Denkweise gelöst hat, wendete man sich dem Käufer zu. Dynamische Preise wurden fĂĽr verschiedene Segmente, meist basierend auf soziografischen Eigenschaften, ausgespielt. Falls man von diesen Algorithmen profitiert, hat man sicherlich nichts dagegen etwas zu sparen. Findet man sich aber auf der anderen Seite wieder und muss mehr bezahlen, findet man das ganze sicherlich nicht so spaĂźig. Denn dort, wo man Low-Segment-Käufer gewinnt (niedrigere Gewinne macht), muss man mehr aus den High-Segment-Käufern herausholen (um niedrigere Gewinne zu kompensieren).

The Bigger Picture

 

 

pexels-photo-236093Zusammen mit der Entwicklung des persönlichen Home-Assistenten kann das ein spannendes Szenario werden. Wenn der Algorithmus lernt, dass einige Käufer wenig Zeit mit Preisvergleichen verbringen und lieber Produkte über den Home-Assistenten bestellen, wird er zum Pokerspieler. Er spekuliert auf ein bestimmtes Verhalten und macht einen guten Deal. Das Bestellen von Lebensmitteln wird dadurch auch zu einem Pokerspiel, wenn in der Zukunft automatisch bestimmte Produkte nachgekauft werden sollen.




Interessant?

Du fandest das spannend? Hier gibt es eine absolute Empfehlung zu einem Radio-Interview (englisch) mit Sven Brodmerkel (Professor, Bond University), Max Daniel (Executive Director, FRI Berlin) und Steve Wise (President,  Nonhuman Rights Project) mit dem Titel: Dynamic pricing – and should AI be granted “legal personhood”. AuĂźerdem wird es demnächst  im Science Radar auch Updates zum Thema Dynamic Pricing geben.

Amazon Go – Der disruptive Supermarkt der Zukunft

Viele Visionäre hatten sowas erst in 4 bis 5 Jahren auf dem Zettel. Nun kann der automatisierte Supermarkt schon viel schneller Realität und konkurrenzfähig werden, als von vielen gewollt. Amazon stellte heut Amazon Go vor. Es ist der erste Supermarkt, der komplett ohne Personal im Front Office auskommt. Aber wie funktionierts? Laut Amazon werden dabei lang erprobte Deep Learning Modelle für die Verhaltensanalyse verwendet.

Nach dem Einchecken per Smartphone, kann sich der Kunde jedes Produkt aus dem Regal nehmen, was ihm gefällt. Schlaue Computer Vision Algorithmen verstehen die Aktionen der User und buchen die Artikel problemlos auf das Amazon-Konto des Users.

In Seattle soll der erste Markt im FrĂĽhling 2017 an den Start gehen. Wir sind gespannt und beobachten den Fortschritt von Amazon Go!