Author: Alexander Bresk

5th #MLDD – Signals from outer Space

IMG_0076Am 08.05.2018 fand in den Gebäuden der LOVOO GmbH das 5. MLDD – Machine Learning Meetup statt. Diesmal zeigte Vlasta Kus von GraphAware den 75 Teilnehmern, wie man mit der NASA Lessons Learned Datenbank (eine Datenbank mit Review-Dokumenten) und etwas NLP einen Graphen entwerfen kann, der bei der Wissensrepräsentation hilft. Dies geschieht mit neo4j, einer Graphendatenbank, die umfangreiche Visualisierungsoptionen bietet.

Vlasta zeigte außerdem diverse Optionen, wie man das bestehende Verfahren noch verbessern kann sowie erweiterte Möglichkeiten bezüglich Deep Learning und Natural Language Processing. Auch ergaben sich einige Fragen zu Anwendbarkeit der gezeigten Modelle.

Du interessierst dich auch für das MLDD? Hier findest du die Meetup-Gruppe zum MLDD.

ML Conference 2018 in München – Das Programm ist online

Vom 18 bis 20. Juni geben international führende IT-Experten bei der zweiten Machine Learning Conference im Münchener Sheraton Arabellapark Hotel einen umfassenden Einblick in die Welt des Maschinellen Lernens und der Künstlichen Intelligenz. Die Konferenz bietet insgesamt über 35 Sessions, Keynotes und Workshops mit den drei parallelen Tracks “Business & Strategy”, “Machine Learning Tools & Principles” und “Machine Learning Advanced Development”. Über 35 Speaker, u.a. Canburak Tümer (Turkcell), Constantin Gonzalez (Amazon Web Services Germany), Marisa Tschopp (SCIP AG), Laurent Picard (Google), Daniel Wrigley (SHI) und Alison Lowndes (NVIDIA) präsentieren die neusten technologischen Entwicklungen aus Forschung und Industrie.

Unter anderem können die Teilnehmer aus den folgenden Sessions wählen: 

  • „Deep Learning in Telecommunication“ (Burak Isikli, Turkcell)
  • „Deep Learning Dive into the Graphics World“ (Muzahid Hussain, Dassault Systems 3d Excite)
  • „Boost your app with Machine Learning APIs“ Laurent Picard (Google)
  • „AI really is all that!“ Alison Lowndes (NVIDIA)
  • „Amazon SageMaker: Building, Training and Deploying Machine Learning Models Efficiently and at Scale“ Constantin Gonzalez (Amazon Web Servives Germany)
  • „Natural Language Support with LUIS“ Rainer Stropek (software architects / www.IT-Visions.de)

Am ersten Tag haben die Teilnehmer die Möglichkeit, drei ganztägige Praxis-Workshops zu besuchen. Im „AI Product Workshop“ wird Luis Rodriguez (Teknolog IO) mithilfe von realen Fallstudien eine Reihe von Techniken zur Gestaltung mit maschinellen Lerntechnologien veranschaulichen. Xander Steenbrugge (ML6) führt in seinem Workshop „Deep Learning with TensorFlow“ in die Grundlagen von Googles Deep Learning Bibliothek ein wird anhand von praktischen Beispielen den Umgang mit diesem Tool üben.

Abgerundet wird das Programm von drei Keynotes, u.a. zu dem Thema „Cracking open the Black Box of Neural Networks“ von Xander Steenbrugge (ML6), und dem Get-together, bei dem die Teilnehmer bei Freigetränken und Snacks die Möglichkeit zur Vernetzung und zum Austausch haben.

 Das ganze Programm kann ab sofort online eingesehen werden unter: https://mlconference.ai/programWeitere Informationen und Tickets finden Interessenten unter: https://mlconference.ai/

(PM von sandsmedia)

Fastbrick Robotics – Disruption in der Baubranche

Der Roboter auf der Baustelle ist in Deutschland noch weit von der Umsetzung entfernt. Das stellten auch Thomas Bock und Thomas Linner (beide TU München) in ihrem “Cambridge Handbooks on Construction Robotics” fest. Die wenigsten der weltweit verwendeten Baustellenroboter (ca. 5.000, Stand 2016) stehen nämlich in Deutschland (gemessen an Industrienationen). Aber auch in der Baubranche, wie in jeder anderen, gibt es aktuell Disruption. Die könnte aus Australien kommen.

Ein Haus mit einem Roboter bauen, dass ist die Mission von Fastbrick Robotics. Ihren Sitz hat die Firma in Perth (Australien) und wurde 2015 gegründet. Zu den Investoren gehört unter anderen auch Caterpillar, die mit ihren riesigen Baufahrzeugen der klare Weltmarktführer sind.

Mit HadrianX, dem fahrbaren Lkw-Roboter von Fastbrick, ist es möglich, Stein auf Stein zu setzen und somit ein Haus in einer effizienteren Geschwindigkeit zu bauen. Bevor jedoch HadrianX die Bühne betrat, arbeitete Fastbrick am Vorgänger – dem Hadrian105. Diese Maschine sah bedeutend unspektakulärer aus.

Hadrian105 und Hadrian109 nutzen als Grundform ein Baggerfahrzeug, dass die Ladung Baumaterial mit sich führte. Der Roboter, in dem bisher nur wenig Künstliche Intelligenz steckt, weiß, wie das Gebäude aussehen soll und baut Stein auf Stein – arbeitet einen Plan ab. Eine bedeutende Restriktion ist jedoch die Anzahl der Steine, die das Baggerfahrzeug mit sich nehmen konnte.

Abbildung 1: Roadmap der Kommerzialisierung von Hadrian109 (Präsentation, Q1 2015)

Diese Restriktion löst HadrianX, dem ein Lastkraftwagen zu Grunde liegt, auf. Durch die größere Ladefläche, war es möglich, schneller und damit noch effizienter zu bauen.

Abbildung 1 zeigt die Roadmap (Stand 2015) von Fastbrick Robotics. In 2018 soll das System produktiv ausgerollt werden. Es wird also spannend. Ein Blick auf die Aktien der Firma Fastbrick Robotics (FBR.AX, DZ2.F, FBRKF) lohnt sich immer mal wieder.

Das war die kurze Vorstellung von Fastbrick Robotics – einem kommenden Disruptor in der Baubranche.

Was bleibt?

  • Auch in der Baubranche gibt es technischen Fortschritt und digitale Disruption
  • Fastbrick Robotics existiert seit 2015 und rollt 2018 das System HadrianX produktiv aus
  • Die Disruption in der Baunbrache hat Deutschland noch nicht erreicht

 

Ihr interessiert euch für Roboter der Konstruktionsphase. Dann findet ihr hier die richtigen Links!

 

 

 

Cloud, Machine Learning und Mobile – Die DecompileD Conference in Dresden

decompiled_conference-logoAm 6. April findet im Dresdner Parkhotel die 1. DecompileD Conference statt. Die Themen auf der Konferenz sind Mobile Development, Cloud Infrastructure und Machine Learning.

Die Referenten berichten unter anderem, wie man auf Mobile-Applikationen Machine Learning benutzen kann und wie ganze Plattformen auf Cloud Plattformen umgezogen wurden. Insgesamt werden 19 Talks gezeigt.

Die Teilnehmer erwartet ein tolles Event mit zwei parallelen Tracks. Außerdem wird es eine Meetup-Expo geben, auf der sich regionale und überregionale Meetups präsentieren. Begleitet wird die Konferenz mit ansprechendem Catering vormittags, mittags sowie abends.

Für ein würdiges Ende der Konferenz wird eine Aftershow-Party mit vielen Specials sorgen. Ihr habt noch kein Ticket?

Spart 15% und nutzt den Rabattcode “MACHINEROCKSTARS” bei der Bestellung eures Tickets.

Hier gehts zur DecompileD!

Bösartige Künstliche Intelligenz – Vorhersagen und Schutz

Kürzlich wurde der The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation – Report veröffentlicht. An diesem Report arbeiteten 26 Wissenschaftler, Forscher und Practitioner von verschiedenen Instituten, Firmen und Universitäten. Er ist das Ergebnis eines intensiven 2-Tage-Workshops. Hauptsächlich wurde der Report unterstützt von:

  • Future of Humanity Institute
  • University of Oxford
  • Centre for the Study of Existential Risk
  • University of Cambridge
  • Center for a New American Security Electronic Frontier Foundation
  • OpenAI

Ein Screenshot aus dem Report. Die Performance von Computer Vision Algorithmen (hier ImageNet) wird immer akkurater. Die Performance des Menschen wird hier mit einer Verbesserung von 0 angenommen. Die Fehlerrate des Menschen (bei 5% geschätzt) wird von den aktuellen Algorithmen qualitativ übertroffen.

Der Report greift verschiedene mögliche Angriffszenarien auf und beschreibt den Schutz davor. Auch im Zusammenhang mit Social Engineering sind diverse Angriffe unter der Nutzung von Künstliche Intelligenz denkbar. Für diese Angriffe sensibilisiert der Report. Allerdings ist er eher politischer Natur und damit zur Referenz für politische Entscheider gedacht.

Diese Handlungsempfehlungen werden gemacht:

  • Der Gesetzgeber soll eng mit Ingenieuren zusammenarbeiten, um möglichen Dual-Use (Nutzen der Technologie für kriminelle / unethische Zwecke) zu verhindern.
  • Ingenieure und Forscher sollen sich der Dual-Use Natur ihrer Arbeit immer bewusst sein.
  • In etablierten Bereichen soll es Best Practices geben, die die Dual-Use Möglichkeiten einschränken.
  • Das Domainwissen bei AI-Fragen und -Entscheidungen soll maximiert werden, sprich: viele verschiedene Experten werden in Entscheidungen einbezogen.

Hier kann man den ganzen Report lesen!

Welche Deep Learning Frameworks gibt es?

Stand Deep Learning Frameworks 2017. Credits: Indra den Bakker

Stand Deep Learning Frameworks 2017. Credits: Indra den Bakker

Wie sah die Landschaft der Deep Learning Frameworks im abgelaufenen Jahr 2017 aus? Die 5 großen Player Google, Microsoft, Amazon und Facebook stecken hinter den bekanntesten und meist benutzten Frameworks.

Was wird das Jahr 2018 bringen? Einige Zeichen stehen auf Konsolidierung der Frameworks, Entwicklerteams von einigen Frameworks wollen sich sogar anderen Entwicklern anschließen, um ein neues Framework zu bauen.

Mehr dazu lest ihr im Artikel von Indra den Bakker

 

Der 34C3 – Spannende Machine Learning Videos

Der 34. Chaos Communication Congress des CCC fand in Leipzig statt. Wir haben für euch alle wichtigen Vorträge gesehen und euch die 3 relevantesten Machine Learning Talks hier verlinkt. Viel Spaß!

 

Beeinflussung durch Künstliche Intelligenz

Social Bots, Fake News und Filterblasen

Deep Learning Blind Spots

Roboter oder nicht? Diese Tests müssen Roboter bestehen

Okay, Roboter! Oder doch Mensch? Was macht einen Roboter aus und wann verwechseln wir Mensch und Roboter? Mit dieser Frage beschäftigen sich Wissenschaftler schon seit Jahrzehnten. Sie entwickeln Tests dafür, um herauszufinden, ob ein gegenüber (beispielsweise im Chat) ein Roboter ist oder nicht. Einige dieser Tests stellt dieser Artikel vor.

 

The Turing Test (Turing)

Das ist der absolute Klassiker dieser Tests. 1950 schlug Alan Turing ihn vor. Dabei geht es darum, eine Maschine von einem Menschen zu unterscheiden. Ein Fragensteller stellt zwei Akteuren die gleichen Fragen. Er sieht sie nicht – sie chatten nur. Kann der Fragensteller anhand der Antworten nicht unterscheiden, ob er mit einem Menschen oder einer Maschine schreibt, hat die Maschine den Turing Test bestanden.

Die Kritiker des Tests opponieren, dass der Turing-Test nur die funktionalen Fähigkeiten der Maschine herausfordert. Sie schlagen vor, außerdem die Kreativität und die Diskursfähigkeit in den Test einzubeziehen. Zwei, auf dem Turing-Test aufbauende, Tests sind darauf ausgerichtet: Lovelace-Test und Metzinger-Test.

The Coffee Test (Wozniak)

Der Apple Mitgründer Steve Wozniak (auch Woz genannt) schlug diesen Test vor. Ein Roboter soll dazu in der Lage sein, einen durchschnittlichen amerikanischen Haushalt zu betreten, die Küche aufzusuchen und dort alle nötigen Zutaten für einen Kaffee zu finden. Danach muss er den Kaffee zubereiten und servieren. Das erfordert viele verschiedene Komponenten und ein hohes Verständnis der Umwelt, denn jeder Haushalt ist anders aufgebaut. Es gibt verschiedene Produkte und Geräte, die er Proband kennen und verstehen muss.

 

The Robot College Student Test (Goertzel)

Bei diesem Test geht es darum, auf eine amerikanische Universität zu kommen. Der Roboter besteht den Test, wenn er die Prüfungen in allen relevanten Fächern besteht. Dafür muss er genauso gut wie der Mensch oder sogar besser abschneiden. Im Juni 2017 hat ein chinesisches Unternehmen eine Künstliche Intelligenz für diesen Test (ausschließlich für das Fach Mathe) entworfen. Das System bestand den Test, wenn auch nicht mit einer sehr guten Benotung.

 

The Employment Test (Nilsson)

Das Roboter oder Algorithmen bestimmte Jobs bedrohen, ist bereits bekannt. Nils J. Nilsson hat 2005 vorgeschlagen, auch Roboter einen Einstellungstest zu unterziehen. Dabei sollen die Roboter in der Lage sein, alle möglichen Aufgaben zu lösen, denn jeder Job ist anders und fordert andere Qualitäten von der Arbeitskraft.

Das Roboter meist ohne Einstellungstest einen Job bekommen, zeigt der Polzeiroboter der bereits in Dubai getestet wird.

 

The Flat Pack Furniture Test (Tony Severyns)

Ist auch als IKEA-Test bekannt. Dabei muss der Roboter ein Möbelstück aufbauen. Startpunkt ist dabei ein geschlossenes Paket, in welchem eine Bauanleitung sowie alle nötigen Teile verstaut sind. Der Test ist bestanden, sobald das Möbelstück korrekt verschraubt und verleimt ist. Außerdem muss das Möbelstück korrekt dort platziert werden, wo es hingehört.

 

Unzählige weitere Tests

Seit der Erfindung des Turing-Tests vor mehr als 60 Jahren gab es immer wieder neue Versuche und mögliche Entwürfe für Reifeprüfungen. Die AAAI Conference on Artificial Intelligence 2015 hatte sogar einen ganzen Workshop nur für dieses Thema reserviert.

So funktioniert Recommendation bei Spotify

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Rot markiert. Recommendation bei Spotify (Credit: Chris Johnson, Spotify)

Empfehlungssystemen begegnet man überall im Internet. Auch bei Spotify arbeitet man mit State-of-the-Art Systemen im Bereich Recommendation.

Drei verschiedene Systeme werden bei Spotify dazu benutzt, um euch die Musik vorzuschlagen, die euch sehr wahrscheinlich gefallen könnte.

Dabei bedient sich Spotify an Metadaten der Tracks, liest die Logs der gespielten Musik und durchsucht sogar Blogs und News nach verschiedenen Artikeln. Diese Informationen werden dann benutzt, um euch einen neuen Track zu empfehlen.

Diese 3 Methoden benutzt Spotify

Kollaboratives Filtern – “Wer X gehört hat, hat auch Y gehört.” Amazon nutzt beispielsweise Kollaboratives Filtern, um euch zu zeigen, welche Produkte jemand noch gekauft hat, der ähnliche Produkte wie ihr kaufte. Das funktioniert zum Beispiel über Matrixfaktorisierung.

Natural Language Processing – Die Songtexte und Beschreibungen werden mit Natural Language Processing durchsucht und nach Schlüsselwörtern sortiert. Ähnliche Textpassagen und Phrasen sprechen für eine Ähnlichkeit. Schwierig wird es, wenn der Track sehr wenige bis garkeine Lyrics enthält. Dafür gibt es noch eine dritte Form der Recommendation.

Audio Material – Auf den reinen Audiosignalen wird ein neuronales Netz (Deep Learning) angewandt. Dieses Netz erkennt Ähnlichkeiten in den Frequenenzen. Es nutzt auch weitere Features, um die Ähnlichkeit eines Songs zu bestimmen. So kann man vor allem Songs bewerten, die über keine Lyrics verfügen und bisher selten gehört wurden (also keine Chance für Kollaboratives Filtern hätten).

Ihr findet das Thema spannend? Hier gibt es den längeren Artikel dazu.

5 untechnische Künstliche Intelligenz Begriffe die sie kennen sollten

Künstliche Intelligenz ist meist ein technisches Thema. Welche untechnischen Begriffe muss ich kennen, wenn ich mit meinen Kollegen, Freunden oder auf Konferenzen über das Thema diskutieren will? Wir zeigen dir 5 der wichtigsten untechnischen Begriffe, über die sich trefflich diskutieren und fachsimpeln lässt. Viel Spaß!

Human in the Loop (Buzzword!)

Human in the Loop Systeme benötigen einen menschlichen Supervisor, der ihnen in kritischen Situationen helfen kann. Die meiste Zeit versuchen diese Systeme, das gelernte selbst umzusetzen. Dies dient der Automatisierung von Prozessen. Lediglich in schwierigen oder unbekannten Situationen wird ein Mensch gefragt (in die Loop geholt), um entweder schwierige Entscheidungen zu treffen oder der Maschine neue Situationen zu erklären.

Aktuell werden viele Prozesse in der Wirtschaft und Industrie von Human in the Loop Systemen übernommen. Diese Systeme werden angelernt und benötigen dafür noch einen Supervisor.

 

Technokratie

Technokratie bezeichnet eine Regierungsform ohne Politiker. In dieser Regierungsform werden ausschließlich Wissenschaftler berufen, ein Volk zu vertreten. Technokratie würde direkt übersetzt bedeuten: Regierung der Sachverständigen. Die Probleme der Gesellschaft würden Technokraten mit ihren rationalen Modellen und Vorstellungen lösen. Ein Aspekt der vielen Technokratiekritikern missfällt.

Die Technokratie in ihrer Reinform basiert weder auf Parteien noch auf Koalitionsgedanken. Die gewählten Vertreter sind parteilos und handeln im Rahmen ihrer wissenschaftlichen Möglichkeiten.




Transhumanismus

Als Transhumanismus versteht man eine philosophische Denkrichtung, den Menschen durch technologische Komponenten in jeglicher Form zu erweitern oder verbessern. Der Transhumanismus hat aktuell 3 verschiedene Strömungen ausgebildet: Demokratischer Transhumanismus, Extropianismus und Singularitarianismus.

Der Transhumanismus kann sich in der Realität sehr vielfältig äußern, durch Sportler mit Prothesen, BioArt-Akteure (wie Stelarc) oder Literatur wie Homo Deus (auf englischauf deutsch).

 

Posthumanismus

Der Posthumanismus ist eine philosophische Denkrichtung. Im Kern ist die Aussage: „Der Mensch hat seinen evolutionären Zenit bereits erreicht – es ist Zeit für etwas neues“. Der Mensch wird hier nur als eine Spezies unter vielen gesehen.

Dem Mensch wird im PH auch das Recht abgesprochen, die Natur zu zerstören und sich als Krone der Schöpfung zu sehen. Eins steht jedoch fest: Im Posthumanismus gibt es den Menschen unseres Zeitalters nicht mehr.

Dabei ist nicht klar, ob der Mensch als solches oder eben der Homo Sapiens im posthumanistischen Zeitalter keine Rolle mehr spielen soll. Vergleichbar dazu auch: Was ist Transhumanismus (Lexikon), Was ist Transhumanismus (Einführung).

 

Technologische Singularität

Technologische Singularität bezeichnet den Zeitpunkt, an dem Maschinen so fortschrittlich sind, dass sie sich selbst verbessern können. Damit einher geht der Punkt, dass die Zukunft der Menschheit immer schwieriger vorherzusehen ist. Bisher wurde der Zeitpunkt, an dem technologische Singularität eintritt, immer wieder in die Zukunft verschoben. Viele Experten und Forscher auf diesem Gebiet sind sich jedoch einig, dass dieser Zeitpunkt unerwartet und teilweise auch von weiten Teilen der Menschheit unbemerkt eintritt.

Damit verbunden sehen Insider auch die biologische Unsterblichkeit der Menschheit (oder zumindest einzelner Individuen).